Using three-dimensional printed models for trainee orbital fracture education

Author:

Rama Martina,Schlegel Lauren,Wisner Douglas,Pugliese Robert,Ramesh Sathyadeepak,Penne Robert,Watson Alison

Abstract

Abstract Background Three-dimensional printing is an underutilized technology in ophthalmology training; its use must be explored in complex educational scenarios. This study described a novel approach to trainee education of orbital fracture repair utilizing three-dimensional (3D) printed models as a teaching tool. Methods Ophthalmology residents and oculoplastic fellows from multiple training institutions underwent an educational session on orbital fractures, learning through four different models. Participants analyzed orbital fractures through computerized tomography (CT) imaging alone and then utilizing CT imaging with the aid of a 3D printed model. Participants completed a questionnaire assessing their understanding of the fracture pattern and surgical approach. After the training, participants were surveyed on the impact of the educational session. Components of the training were rated by participants on a 5-point Likert scale. Results A statistically significant difference (p < .05) was found in participant confidence conceptualizing the anatomic boundaries of the fracture and planning the orbital fracture approach for repair of three out of four models on pre-test post-test analysis. On exit questionnaire, 84.3% of participants thought the models were a useful tool for surgical planning, 94.8% of participants thought the models were a useful tool for conceptualizing the anatomic boundaries of the fracture, 94.8% of participants thought the models were a useful tool for orbital fracture training, and 89.5% of participants thought the exercise was helpful. Conclusion This study supports the value of 3D printed models of orbital fractures as an effective tool for ophthalmology trainee education to improve understanding and visualization of complex anatomical space and pathology. Given the limited opportunities trainees may have for hands-on orbital fracture practice, 3D printed models provide an accessible way to enhance training.

Publisher

Springer Science and Business Media LLC

Subject

Education,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3