The impact of artificial intelligence on clinical education: perceptions of postgraduate trainee doctors in London (UK) and recommendations for trainers

Author:

Banerjee Maya,Chiew Daphne,Patel Keval T.,Johns Ieuan,Chappell Digby,Linton Nick,Cole Graham D.,Francis Darrel P.,Szram Jo,Ross Jack,Zaman Sameer

Abstract

Abstract Background Artificial intelligence (AI) technologies are increasingly used in clinical practice. Although there is robust evidence that AI innovations can improve patient care, reduce clinicians’ workload and increase efficiency, their impact on medical training and education remains unclear. Methods A survey of trainee doctors’ perceived impact of AI technologies on clinical training and education was conducted at UK NHS postgraduate centers in London between October and December 2020. Impact assessment mirrored domains in training curricula such as ‘clinical judgement’, ‘practical skills’ and ‘research and quality improvement skills’. Significance between Likert-type data was analysed using Fisher’s exact test. Response variations between clinical specialities were analysed using k-modes clustering. Free-text responses were analysed by thematic analysis. Results Two hundred ten doctors responded to the survey (response rate 72%). The majority (58%) perceived an overall positive impact of AI technologies on their training and education. Respondents agreed that AI would reduce clinical workload (62%) and improve research and audit training (68%). Trainees were skeptical that it would improve clinical judgement (46% agree, p = 0.12) and practical skills training (32% agree, p < 0.01). The majority reported insufficient AI training in their current curricula (92%), and supported having more formal AI training (81%). Conclusions Trainee doctors have an overall positive perception of AI technologies’ impact on clinical training. There is optimism that it will improve ‘research and quality improvement’ skills and facilitate ‘curriculum mapping’. There is skepticism that it may reduce educational opportunities to develop ‘clinical judgement’ and ‘practical skills’. Medical educators should be mindful that these domains are protected as AI develops. We recommend that ‘Applied AI’ topics are formalized in curricula and digital technologies leveraged to deliver clinical education.

Publisher

Springer Science and Business Media LLC

Subject

Education,General Medicine

Reference35 articles.

1. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56. https://doi.org/10.1038/s41591-018-0300-7.

2. Ross J, Webb C, Rahman F, AoRCM. Artificial Intelligence in Healthcare: Academy of Medical Royal Colleges; 2019. [cited 2020 Jan 12]. Available from: https://www.aomrc.org.uk/wp-content/uploads/2019/01/Artificial_intelligence_in_healthcare_0119.pdf

3. Topol E. The Topol Review - preparing the healthcare workforce to deliver the digital future: NHS; 2019. [cited 2021 Jan 12]. Available from: https://topol.hee.nhs.uk/wp-content/uploads/HEE-Topol-Review-2019.pdf

4. Joshi I, Morley J. Artificial Intelligence: How to get it right. Putting policy into practice for safe data-driven innovation in health and care: NHSX; 2019. [cited 2021 Jan 12]. Available from: https://www.nhsx.nhs.uk/media/documents/NHSX_AI_report.pdf

5. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3