Abstract
AbstractFor the average state of the normal distribution parameter estimation, regular normal distribution parameter gives an estimation, but the carbonation depth of influence factors is more of a parameter estimation, shooting low deficiencies; therefore, putting forward application in the carbonation depth of the normal distribution parameter is estimated. A normal distribution parameter estimation model is constructed, and a normal distribution parameter estimation model framework is constructed by using the least squares method to determine the expression of normal distribution parameters. Based on the linear deviation calculation of normal distribution parameters and the determination of the maximum similar value of parameters, the parameter estimation is realized by using the Bayesian function of carbonization depth. The parameter estimation of network signal based on carbonization depth is proposed. Parameter estimation can play an important role in the intelligent analysis of big data, and it is also an important basic guarantee for machine learning algorithms. Using the integrity test results and error rate test result, variable parameters calculated from measured parameters, substitution shooting parameters calculation formula of parameter estimation is put forward by the conventional parameter estimation methods, which shot up to 22.12%, is suitable for the carbonation depth of the normal distribution parameter estimation.
Funder
Jiangsu Natural Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Reference23 articles.
1. W. Lai, G. Xiaofeng, Study on optimization algorithm for parameter estimation of frequency-hopping signal. Computer Simulation 33(6), 223–227 (2016)
2. W. Yang, Z. Yunshan, Liquan, Simulation study on the accurate estimation of SOC power of ternary lithium battery. Computer Simulation 12, 143–148 (2017)
3. T. Che, L. Dai, X. Zheng, et al., Estimation of snow depth from passive microwave brightness temperature data in forest regions of northeast China. Remote Sens. Environ. 183, 334–349 (2016)
4. X. Feng, L. Dong, J. Chen, et al., Kinetic parameter estimation and simulation of trickle-bed reactor for hydrodesulfurization of whole fraction low-temperature coal tar. Fuel, 113–125 (2018)
5. R. Feng, J. Huang, J. Sun, et al., A novel 3D frequency domain SAGE algorithm with applications to parameter estimation in mmWave massive MIMO indoor channels. Science China Inf. Sci. 60(8), 080305 (2017)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献