Prediction of the Hypertension Risk of the Elderly in Built Environments Based on the LSTM Deep Learning and Bayesian Fitting Method

Author:

Zhu Rui,Lv Yang,Wang Zhimeng,Chen Xi

Abstract

Hypertension has become the greatest risk factor for death in elderly populations. As factors influencing cardiovascular disease, indoor environmental parameters pose potential risks for older adults. In this study, elderly residents in Dalian (Liaoning Province, China) urban dwellings were selected as the research subjects, and the environmental parameters of the dwellings’ main activity rooms and the blood pressure parameters of the older adults were measured. Based on the Long Short-Term Memory (LSTM) deep learning algorithm and Bayesian fitting method, a hypertension disease model was established using the long-term environmental parameters to predict the hypertension risk of older adults in their building’s environment. The results showed that temperature, humidity, and some air quality parameters had an impact on blood pressure under single environmental factor, and the comprehensive environmental risks of high systolic blood pressure, high diastolic blood pressure, and high blood pressure were 16.44%, 0%, and 16.44% for the male elderly and 14.11%, 7.14%, and 17.55% for the female elderly, respectively. By comparing the results for the blood pressure measurement and prediction, it can be observed that the risk error of hypertension obtained by the algorithm maintains the variables’ relationship, and the result of the algorithm is reliable in this period. This technology can provide a basis for measuring environmental parameters and will be conducive to the development of an ecological smart building environment.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference55 articles.

1. World Population Prospectshttps://population.un.org/wpp/

2. ASHRAE Handbook of Fundamentals,2017

3. The IAQ challenge to facility management: healthy buildings through affordable indoor air quality programmes

4. Indoor Air Pollution: An Edifice Complex

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3