Classification and Prediction on Hypertension with Blood Pressure Determinants in a Deep Learning Algorithm

Author:

Kim Hyerim,Hwang Seunghyeon,Lee Suwon,Kim YoonaORCID

Abstract

Few studies classified and predicted hypertension using blood pressure (BP)-related determinants in a deep learning algorithm. The objective of this study is to develop a deep learning algorithm for the classification and prediction of hypertension with BP-related factors based on the Korean Genome and Epidemiology Study-Ansan and Ansung baseline survey. We also investigated whether energy intake adjustment is adequate for deep learning algorithms. We constructed a deep neural network (DNN) in which the number of hidden layers and the number of nodes in each hidden layer are experimentally selected, and we trained the DNN to diagnose hypertension using the dataset while varying the energy intake adjustment method in four ways. For comparison, we trained a decision tree in the same way. Experimental results showed that the DNN performs better than the decision tree in all aspects, such as having higher sensitivity, specificity, F1-score, and accuracy. In addition, we found that unlike general machine learning algorithms, including the decision tree, the DNNs perform best when energy intake is not adjusted. The result indicates that energy intake adjustment is not required when using a deep learning algorithm to classify and predict hypertension with BP-related factors.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference63 articles.

1. NCD Risk Factor Collaboration (NCD-RisC) (2019). Long-term and recent trends in hypertension awareness, treatment, and control in 12 high-income countries: An analysis of 123 nationally representative surveys. Lancet, 394, 639–651.

2. Korea hypertension fact sheet 2018;Clin. Hypertens.,2018

3. GBD 2017 Risk Factor Collaborators (2018). Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 392, 1923–1994.

4. GBD 2015 Risk Factors Collaborators (2016). Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet, 388, 1659–1724.

5. Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration (2014). Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: A comparative risk assessment. Lancet. Diabetes Endocrinol., 2, 634–647.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3