Abstract
AbstractIt has been widely acknowledged that network slicing is a key architectural technology to accommodate diversified services for the next generation network (5G). By partitioning the underlying network into multiple dedicated logical networks, 5G can support a variety of extreme business service needs. As network slicing is implemented in radio access networks (RAN), user handoff becomes much more complicated than that in traditional mobile networks. As both physical resource constraints of base stations and logical connection constraints of network slices should be considered in handoff decision, an intelligent handoff policy becomes imperative. In this paper, we model the handoff in RAN slicing as a Markov decision process and resort to deep reinforcement learning to pursue long-term performance improvement in terms of user quality of service and network throughput. The effectiveness of our proposed handoff policy is validated via simulation experiments.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献