Author:
Zhou Huaping,Myrzashova Raushan,Zheng Rui
Abstract
AbstractToday, diabetes is one of the most common, chronic, and, due to some complications, deadliest diseases in the world. The early detection of diabetes is very important for its timely treatment since it can stop the progression of the disease. The proposed method can help not only to predict the occurrence of diabetes in the future but also to determine the type of the disease that a person experiences. Considering that type 1 diabetes and type 2 diabetes have many differences in their treatment methods, this method will help to provide the right treatment for the patient. By transforming the task into a classification problem, our model is mainly built using the hidden layers of a deep neural network and uses dropout regularization to prevent overfitting. We tuned a number of parameters and used the binary cross-entropy loss function, which obtained a deep neural network prediction model with high accuracy. The experimental results show the effectiveness and adequacy of the proposed DLPD (Deep Learning for Predicting Diabetes) model. The best training accuracy of the diabetes type data set is 94.02174%, and the training accuracy of the Pima Indians diabetes data set is 99.4112%. Extensive experiments have been conducted on the Pima Indians diabetes and diabetic type datasets. The experimental results show the improvements of our proposed model over the state-of-the-art methods.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献