Link prediction in paper citation network to construct paper correlation graph

Author:

Liu Hanwen,Kou Huaizhen,Yan Chao,Qi Lianyong

Abstract

Abstract Nowadays, recommender system has become one of the main tools to search for users’ interested papers. Since one paper often contains only a part of keywords that a user is interested in, recommender system returns a set of papers that satisfy the user’s need of keywords. Besides, to satisfy the users’ requirements of further research on a certain domain, the recommended papers must be correlated. However, each paper of an existing paper citation network hardly has cited relationships with others, so the correlated links among papers are very sparse. In addition, while a mass of research approaches have been put forward in terms of link prediction to address the network sparsity problems, these approaches have no relationship with the effect of self-citations and the potential correlations among papers (i.e., these correlated relationships are not included in the paper citation network as their published time is close). Therefore, we propose a link prediction approach that combines time, keywords, and authors’ information and optimizes the existing paper citation network. Finally, a number of experiments are performed on the real-world Hep-Th datasets. The experimental results demonstrate the feasibility of our proposal and achieve good performance.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MONA: An Efficient and Scalable Strategy for Targeted k-Nodes Collapse;IEEE Transactions on Circuits and Systems II: Express Briefs;2024-06

2. Computational drug repositioning with attention walking;Scientific Reports;2024-05-02

3. Targeted k-node collapse problem: Towards understanding the robustness of local k-core structure;Physica A: Statistical Mechanics and its Applications;2024-05

4. Keyphrase-Based Literature Recommendation: Enhancing User Queries with Hybrid Co-citation and Co-occurrence Networks;Journal of Scientometric Research;2024-04-15

5. Citation Forecasting with Multi-Context Attention-Aided Dependency Modeling;ACM Transactions on Knowledge Discovery from Data;2024-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3