Author:
Liu Hanwen,Kou Huaizhen,Yan Chao,Qi Lianyong
Abstract
Abstract
Nowadays, recommender system has become one of the main tools to search for users’ interested papers. Since one paper often contains only a part of keywords that a user is interested in, recommender system returns a set of papers that satisfy the user’s need of keywords. Besides, to satisfy the users’ requirements of further research on a certain domain, the recommended papers must be correlated. However, each paper of an existing paper citation network hardly has cited relationships with others, so the correlated links among papers are very sparse. In addition, while a mass of research approaches have been put forward in terms of link prediction to address the network sparsity problems, these approaches have no relationship with the effect of self-citations and the potential correlations among papers (i.e., these correlated relationships are not included in the paper citation network as their published time is close). Therefore, we propose a link prediction approach that combines time, keywords, and authors’ information and optimizes the existing paper citation network. Finally, a number of experiments are performed on the real-world Hep-Th datasets. The experimental results demonstrate the feasibility of our proposal and achieve good performance.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Cited by
97 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献