Abstract
AbstractWireless devices’ energy efficiency and spectrum shortage problem has become a key concern worldwide as the number of wireless devices increases at an unparalleled speed. Wireless energy harvesting technique from traditional radio frequency signals is suitable for extending mobile devices’ battery life. This paper investigates a cognitive radio network model where primary users have their specific licensed band, and secondary users equipped with necessary hardware required for energy harvesting can use the licensed band of the primary user by smart sensing capability. Analytical expressions for considered network metrics, namely data rate, outage probability, and energy efficiency, are derived for uplink and downlink scenarios. In addition, optimal transmission power and energy harvesting power are derived for maximum energy efficiency in downlink and uplink scenarios. Numerical results show that outage probability improves high transmission power in the downlink scenario and high harvested power in the uplink scenario. Finally, the result shows that energy efficiency improves using optimum transmission power and energy harvesting power for downlink and uplink scenarios.
Funder
Universiti Kebangsaan Malaysia
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献