Multi-Objective Optimization of Joint Power and Admission Control in Cognitive Radio Networks Using Enhanced Swarm Intelligence

Author:

El-Saleh Ayman A.ORCID,Shami Tareq M.,Nordin RosdiadeeORCID,Alias Mohamad Y.,Shayea Ibraheem

Abstract

The problem of joint power and admission control (JPAC) is a critical issue encountered in underlay cognitive radio networks (CRNs). Moving forward towards the realization of Fifth Generation (5G) and beyond, where optimization is envisioned to take place in multiple performance dimensions, it is crucially desirable to achieve high sum throughput with low power consumption. In this work, a multi-objective JPAC optimization problem that jointly maximizes the sum throughput and minimizes power consumption in underlay CRNs is formulated. An enhanced swarm intelligence algorithm has been developed by hybridizing two new enhanced Particle Swarm Optimization (PSO) variants, namely two-phase PSO (TPPSO) and diversity global position binary PSO (DGP-BPSO) variants employed to optimize the multi-objective JPAC problem. The performance of the enhanced swarm intelligence algorithm in terms of convergence speed and stability, while optimizing both the sum throughput and power consumption, is investigated under three different operational scenarios defined by their single objective priorities, which translate to sum throughput and power consumption preferences. Simulation results have proven the effectiveness of the enhanced swarm intelligence algorithm in achieving high sum throughput and low power consumption under the three operational scenarios when the network includes an arbitrary number of primary and secondary users. Comparing the hybrid SPSO approach and the proposed approach, the proposed scheme has shown its effectiveness in increasing the sum throughput to 7%, 16%, and 31% under the multimedia, balanced and power saving operational scenarios, respectively. In addition, the proposed approach is more power efficient as it can provide additional power savings of 3.58 W, 2.48 W, and 1.6741 W under the aforementioned operational scenarios, respectively.

Funder

Universiti Kebangsaan Malaysia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3