Affiliation:
1. School of Mathematics and Computer Science University of Wolverhampton Wolverhampton UK
2. Department of Computer Science Nottingham Trent University Nottingham UK
Abstract
SummaryCellular networks are projected to deal with an immense rise in data traffic, as well as an enormous and diverse device, plus advanced use cases, in the nearest future; hence, future 5G networks are being developed to consist of not only 5G but also different radio access technologies (RATs) integrated. In addition to 5G, the user's device (UD) will be able to connect to the network via LTE, WiMAX, WiFi, Satellite and other technologies. On the other hand, Satellite has been suggested as a preferred network to support 5G use cases. However, achieving load balancing is essential to guarantee an equal amount of traffic distributed between different RATs in a heterogeneous wireless network; this would enable optimal utilisation of the radio resources and lower the likelihood of call blocking/dropping. This study presented an artificial intelligent‐based application in heterogeneous wireless networks and proposed an enhanced particle optimisation (EPSO) algorithm to solve the load balancing problem in 5G‐Satellite networks. The algorithm uses a call admission control strategy to admit users into the network to ensure that users are evenly distributed on the network. The proposed algorithm was compared with the Artificial Bee Colony and Simulated Annealing algorithm using three performance metrics: throughput, call blocking and fairness. Finally, based on the experimental findings, results outcomes were analysed and discussed.