An Unsupervised LLR Estimation with unknown Noise Distribution

Author:

Mestrah YasserORCID,Savard Anne,Goupil Alban,Gellé Guillaume,Clavier Laurent

Abstract

AbstractMany decoding schemes rely on the log-likelihood ratio (LLR) whose derivation depends on the knowledge of the noise distribution. In dense and heterogeneous network settings, this knowledge can be difficult to obtain from channel outputs. Besides, when interference exhibits an impulsive behavior, the LLR becomes highly non-linear and, consequently, computationally prohibitive. In this paper, we directly estimate the LLR, without relying on the interference plus noise knowledge. We propose to select the LLR in a parametric family of functions, flexible enough to be able to represent many different communication contexts. It allows limiting the number of parameters to be estimated. Furthermore, we propose an unsupervised estimation approach, avoiding the need of a training sequence. Our estimation method is shown to be efficient in large variety of noises and the receiver exhibits a near-optimal performance.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LLR estimation using machine learning;Alexandria Engineering Journal;2024-10

2. Joint estimation and decoding algorithm for LDPC code in different impulsive noise channel;2022 IEEE Wireless Communications and Networking Conference (WCNC);2022-04-10

3. Unsupervised Log-Likelihood Ratio Estimation for Short Packets in Impulsive Noise;2022 IEEE Wireless Communications and Networking Conference (WCNC);2022-04-10

4. Isotropic and Non-Isotropic Signaling in Multivariate α-Stable Noise;Frontiers in Communications and Networks;2021-10-13

5. On the performance of ECF-based multi-threshold receiver in NOMA systems for vehicular communications with unknown impulsive noise;Vehicular Communications;2021-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3