Abstract
A wide range of communication systems are corrupted by non-Gaussian noise, ranging from wireless to power line. In some cases, including interference in uncoordinated OFDM-based wireless networks, the noise is both impulsive and multivariate. At present, little is known about the information capacity and corresponding optimal input distributions. In this paper, we derive upper and lower bounds of the information capacity by exploiting non-isotropic inputs. For the special case of sub-Gaussian α-stable noise models, a numerical study reveals that isotropic Gaussian inputs can remain a viable choice, although the performance depends heavily on the dependence structure of the noise.
Funder
Agence Nationale de la Recherche