Using vision-based object detection for link quality prediction in 5.6-GHz channel

Author:

Kudo RiichiORCID,Takahashi Kahoko,Inoue Takeru,Mizuno Kohei

Abstract

AbstractVarious smart connected devices are emerging like automated driving cars, autonomous robots, and remote-controlled construction vehicles. These devices have vision systems to conduct their operations without collision. Machine vision technology is becoming more accessible to perceive self-position and/or the surrounding environment thanks to the great advances in deep learning technologies. The accurate perception information of these smart connected devices makes it possible to predict wireless link quality (LQ). This paper proposes an LQ prediction scheme that applies machine learning to HD camera output to forecast the influence of surrounding mobile objects on LQ. The proposed scheme utilizes object detection based on deep learning and learns the relationship between the detected object position information and the LQ. Outdoor experiments show that LQ prediction proposal can well predict the throughput for around 1 s into the future in a 5.6-GHz wireless LAN channel.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 5G Throughput Prediction For 28 GHz Channels Using Physical Space Information;2024 IEEE Wireless Communications and Networking Conference (WCNC);2024-04-21

2. PEACH: Proactive and Environment-Aware Channel State Information Prediction with Depth Images;Proceedings of the ACM on Measurement and Analysis of Computing Systems;2023-02-27

3. Two-step wireless link quality prediction using multi-camera images;2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC);2022-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3