PEACH: Proactive and Environment-Aware Channel State Information Prediction with Depth Images

Author:

Ayvasik Serkut1ORCID,Mehmeti Fidan1ORCID,Babaians Edwin1ORCID,Kellerer Wolfgang1ORCID

Affiliation:

1. Technical University of Munich, Munich, Germany

Abstract

Up-to-date and accurate prediction of Channel State Information (CSI) is of paramount importance in Ultra-Reliable Low-Latency Communications (URLLC), specifically in dynamic environments where unpredictable mobility is inherent. CSI can be meticulously tracked by means of frequent pilot transmissions, which on the downside lead to an increase in metadata (overhead signaling) and latency, which are both detrimental for URLLC. To overcome these issues, in this paper, we take a fundamentally different approach and propose PEACH, a machine learning system which utilizes environmental information with depth images to predict CSI amplitude in beyond 5G systems, without requiring metadata radio resources, such as pilot overheads or any feedback mechanism. PEACH exploits depth images by employing a convolutional neural network to predict the current and the next 100 ms CSI amplitudes. The proposed system is experimentally validated with extensive measurements conducted in an indoor environment, involving two static receivers and two transmitters, one of which is placed on top of a mobile robot. We prove that environmental information can be instrumental towards proactive CSI amplitude acquisition of both static and mobile users on base stations, while providing an almost similar performance as pilot-based methods, and completely avoiding the dependency on feedback and pilot transmission for both downlink and uplink CSI information. Furthermore, compared to demodulation reference signal based traditional pilot estimation in ideal conditions without interference, our experimental results show that PEACH yields the same performance in terms of average bit error rate when channel conditions are poor (using low order modulation), while not being much worse when using higher modulation orders, like 16-QAM or 64-QAM. More importantly, in the realistic cases with interference taken into account, our experiments demonstrate considerable improvements introduced by PEACH in terms of normalized mean square error of CSI amplitude estimation, up to 6 dB, when compared to traditional approaches.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Computer Science (miscellaneous)

Reference70 articles.

1. Study on Scenarios and Requirements for Next Generation Access Technologies;GPP.;Technical Specification (TS),2017

2. Study on Physical Layer Enhancements for NR URLLC;GPP.;Technical Report (TR),2019

3. Physical Layer Procedures for Data;GPP.;Technical Specification (TS),2021

4. NR; Physical Channels and Modulation;GPP.;Technical Specification (TS),2022

5. Mart'in Abadi , Paul Barham , Jianmin Chen , Zhifeng Chen , Andy Davis , Jeffrey Dean , Matthieu Devin , Sanjay Ghemawat , Geoffrey Irving , Michael Isard , Manjunath Kudlur , Josh Levenberg , Rajat Monga , Sherry Moore , Derek G. Murray , Benoit Steiner , Paul Tucker , Vijay Vasudevan , Pete Warden , Martin Wicke , Yuan Yu , and Xiaoqiang Zheng . 2016 . TensorFlow: A System for Large-Scale Machine Learning . In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation ( Savannah, GA, USA) (OSDI'16). USENIX Association, USA, 265--283. Mart'in Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation (Savannah, GA, USA) (OSDI'16). USENIX Association, USA, 265--283.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LiDAR Technology For Future Wireless Networks: Use Cases and Challenges;2024 IEEE 30th International Conference on Telecommunications (ICT);2024-06-24

2. Demo: Remote Robot Control with Haptic Feedback over the Munich 5G Research Hub Testbed;2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM);2023-06

3. PEACH: Proactive and Environment-Aware Channel State Information Prediction with Depth Images;Proceedings of the ACM on Measurement and Analysis of Computing Systems;2023-02-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3