Ultra-short-term wind speed forecasting based on support vector machine with combined kernel function and similar data

Author:

He JianORCID,Xu Jingle

Abstract

Abstract The accuracy of wind power prediction is very important for the stable operation of a power system. Ultra-short-term wind speed forecasting is an effective way to ensure real-time and accurate wind power prediction. In this paper, a short-term wind speed forecasting method based on a support vector machine with a combined kernel function and similar data is proposed. Similar training data are selected based on the wind tendency, and a combination of two kinds of kernel functions is applied in forecasting using a support vector machine. The forecasting results for a wind farm in Ningxia Province indicate that a combination of kernel functions with complementary advantages outperforms each single function, and forecasting models based on grouped wind data with a similar tendency could reduce the forecasting error. Furthermore, more accurate wind forecasting results ensure better wind power prediction.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Reference28 articles.

1. B.C. Ummels, M. Gibescu, W.L.K. EngbertPelgrum, A.J. Brand, Impacts of wind power on thermal generation unit commitment and dispatch [J]. IEEE transactions on energy conversion 22(01), 44–51 (2007)

2. Z. Hongyu, Y. Yonghua, S. Hong, et al., Peak-load regulating adequacy evaluation associated with large-scale wind power integration [J]. Proceedings of the CSEE 31(22), 26–31 (2011)

3. W. Yaonan, S. Chunshun, L. Xinran, Short-term wind speed simulation corrected with field measured wind speed [J]. Proceedings of the CSEE 28(11), 94–100 (2008)

4. Y. Xiuyuan, XiaoYang, C. Shuyong, Wind speed and generated power forecasting in wind farm [J]. Proceedings of the CSEE 11(6), 1–5 (2005)

5. G. Shuang, D. Lei, G. Yang, et al., Mid-long term wind speed prediction based on rough set theory [J]. Proceedings of the CSEE 32(01), 32–37 (2012)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3