AgRIS: wind-adaptive wideband reconfigurable intelligent surfaces for resilient wireless agricultural networks at millimeter-wave spectrum

Author:

Nie Shuai,Vuran Mehmet Can

Abstract

Wireless networks in agricultural environments are unique in many ways. Recent measurements reveal that the dynamics of crop growth impact wireless propagation channels with a long-term seasonal pattern. Additionally, short-term environmental factors, such as strong wind, result in variations in channel statistics. Next-generation agricultural fields, populated by autonomous tractors, drones, and high-throughput sensing systems, require high-throughput connectivity infrastructure, resulting in the future deployment of high-frequency networks, where they have not been deployed before. More specifically, when millimeter-wave (mmWave) communication systems, a viable candidate for 5G and 6G high-throughput solutions, are deployed for higher throughput, these issues become more prominent due to the relatively small wavelength at this frequency band. To improve coverage in the mmWave spectrum in agricultural settings, reconfigurable intelligent surfaces (RISs) are a promising solution with low energy consumption and high cost efficiency when compared to half-duplex active relays with multiple antennas. To ensure link resiliency under dynamic channel behavior, an adaptive RIS for broadband wireless agricultural networks (AgRIS) at mmWave band is designed in this work. AgRIS relies on output from a time-series model that forecasts the short-term wind speed based on measured wind data, which is readily available in most farms. The temporal correlation between link reliability and wind speed is demonstrated through extensive field experiments. Our simulation results demonstrate that AgRIS with a small footprint of 11 × 11 elements can help mitigate the adversarial effects of wind-induced signal level drop by up to 8 dB and provides high energy efficiency of 1 Gbits/joule.

Publisher

Frontiers Media SA

Subject

Pharmacology (medical)

Reference37 articles.

1. Depolarization effect by wind incidence on vegetation at 40 GHz;Alejos,2007

2. Robotic technologies for high-throughput plant phenotyping: Contemporary reviews and future perspectives;Atefi;Front. Plant Sci.,2021

3. Ag-IoT for crop and environment monitoring: Past, present, and future;Chamara;Agric. Syst.,2022

4. Estimation and forecast of wind power generation by FTDNN and NARX-net based models for energy management purpose in smart grids;Di Piazza;algorithms,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3