Discrete Hopfield neural network based indoor Wi-Fi localization using CSI

Author:

Dang Xiaochao,Tang Xuhao,Hao Zhanjun,Ren Jiaju

Abstract

AbstractThe fingerprint indoor localization method based on channel state information (CSI) has gained widespread attention. However, this method fails to provide a better localization effect and higher localization accuracy due to poor fingerprint accuracy, unsatisfactory classification and matching effect, and vulnerability to environmental impacts. In order to solve the problem, this paper proposes a CSI fingerprint indoor localization method based on the Discrete Hopfield Neural Network (DHNN). The method mainly consists of off-line and on-line phases. At the off-line phase, a low-pass filter is applied to conduct a preliminary processing on the fingerprint information of each reference point, and then, phase difference is adopted to correct the fingerprint data of all reference points. In this way, the quality of fingerprint data is improved, hence avoiding problems such as indoor environmental changes and multipath effect of signals, etc. in which impact the fingerprint data. Finally, the characteristic fingerprint database is established after acquiring relatively accurate fingerprint data. At the on-line phase, to maintain the consistency of data, the data of each reference point in the fingerprint database is set as an attractor. Meanwhile, the localization information of the test point is processed to make convergence judgment through DHNN. Eventually, the localization result is obtained. The experimental results show that the localization accuracy with a median error of 1.6 m can be achieved through the proposed method in the experimental environment. Compared with similar methods, it has a higher stability which can significantly reduce the cost of manpower and time.

Funder

National Natural Science Foundation of China

Key Science and Technology Support Program of Gansu Province

Science and Technology Innovation Project of Gansu Province

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3