Major 3 Satisfiability logic in Discrete Hopfield Neural Network integrated with multi-objective Election Algorithm

Author:

Roslan Muhammad Aqmar Fiqhi1,Zamri Nur Ezlin2,Mansor Mohd. Asyraf2,Kasihmuddin Mohd Shareduwan Mohd1

Affiliation:

1. School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

2. School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Abstract

<abstract> <p>Discrete Hopfield Neural Network is widely used in solving various optimization problems and logic mining. Boolean algebras are used to govern the Discrete Hopfield Neural Network to produce final neuron states that possess a global minimum energy solution. Non-systematic satisfiability logic is popular due to the flexibility that it provides to the logical structure compared to systematic satisfiability. Hence, this study proposed a non-systematic majority logic named Major 3 Satisfiability logic that will be embedded in the Discrete Hopfield Neural Network. The model will be integrated with an evolutionary algorithm which is the multi-objective Election Algorithm in the training phase to increase the optimality of the learning process of the model. Higher content addressable memory is proposed rather than one to extend the measure of this work capability. The model will be compared with different order logical combinations $ k = \mathrm{3, 2} $, $ k = \mathrm{3, 2}, 1 $ and $ k = \mathrm{3, 1} $. The performance of those logical combinations will be measured by Mean Absolute Error, Global Minimum Energy, Total Neuron Variation, Jaccard Similarity Index and Gower and Legendre Similarity Index. The results show that $ k = \mathrm{3, 2} $ has the best overall performance due to its advantage of having the highest chances for the clauses to be satisfied and the absence of the first-order logic. Since it is also a non-systematic logical structure, it gains the highest diversity value during the learning phase.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3