Efficient data transmission using trusted third party in smart home environments

Author:

Panda Niharika,Supriya M.

Abstract

AbstractCurrently, deployed Internet of Things (IoT) technology acts as a passive observer of the environment that sends data to a remote location. Developing and deploying future IoT applications will need re-tasking this one-way behaviour in a reliable manner. A novel computationally tractable optimization technique that can accept cross-layer resource configurations and focus on network enhancement with longevity should be created for the smart home, one of the heterogeneous IoT applications. This study shows different smart home architectures in static and mobile environments, taking into account some of the challenges like orchestration, mobility, and range in IoT. For network communication, routing protocol over 6LoWPAN (RPL) is used. The goal of the work is to optimize the communication network in both static and mobile environment. To attain the goal, this paper proposes an algorithm that improves the path selection by modifying the existing objective functions of RPL. The proposed smart home architectures are analysed and compared based on different parameters such as packet reception ratio, network overhead, throughput, average latency, and total energy consumption. Even when some of the devices in the smart home are mobile, the modified smart home-optimized path (MSHOP) is found to achieve a packet reception ratio of 99.93%, minimum latency of 0.9 s, and the highest total energy usage in the network of 3373 millijoules. In conclusion, proposed MSHOP outperforms all existing smart home architectures when considering network efficiency, time, and usability.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trusted Third Party Application in Durable Medium e-Service;Applied Sciences;2023-12-25

2. Detection of Energy Efficient Sensor Node in EHWSN;2023 World Conference on Communication & Computing (WCONF);2023-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3