Routing protocol for Low-Power and Lossy Networks for heterogeneous traffic network

Author:

Musaddiq Arslan,Zikria Yousaf Bin,Zulqarnain ,Kim Sung WonORCID

Abstract

AbstractIn a real network deployment, the diverse sensor applications generate a heterogeneous traffic pattern which may include basic sensing measurements such as temperature readings or high-volume multimedia traffic. In a heterogeneous traffic network, the two standardized objective functions (OFs), i.e., objective function zero (OF0) and the Minimum Rank with Hysteresis Objective Function (MRHOF) for routing protocol for Low-Power and Lossy Networks (RPL) perform poor routing decisions by selecting an already congested parent node and cause more re-transmissions across the network. Therefore, careful consideration is required in designing a new OF for heterogeneous traffic scenarios. In this study, we examine the RPL protocol under a heterogeneous traffic pattern and proposed a new protocol based on queue and workload-based condition (QWL-RPL). The aim of the proposed protocol is to achieve a reliable path with better overall performance. The proposed OF model considers the link workload in addition to mapping the congestion status of the node using the packet queue. We implement the proposed routing model in the Contiki operating system (OS) Cooja environment to compare with the existing technique. The simulation results show that QWL-RPL can improve the performance of a heterogeneous traffic network as compared with both OF0 and MRHOF, specifically in terms of the amount of overhead, packets reception ratio (PRR), average delay, and jitter. Final results indicate that on average, there is a 5%–30% improvement in PRR, 25%–45% reduction in overheads, 12%–30% reduction in average delay, and 20%–40% reduction in jitter.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Reference65 articles.

1. A. Gubbi, R. Buyya, S. Marusic and M. Palaniswami, “Internet of Things (IoT): A vision, architectural elements, and future directions,” Future Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, Sep. 2013.

2. F. Al-Turjman, “Smart-cities Medium Access for Smart Mobility Applications in IoT”, Wiley Transactions on Emerging Telecommunications Technologies, Aug. 2019. DOI. 10.1002/ett.3723.

3. M. A. Naeem, R. Ali, B.-S. Kim, S. A. Nor, S. Hassan, "A periodic caching strategy solution for the smart city in information-centric Internet of Things", Sustainability, vol. 10, no. 7, pp. 2576, 2018.

4. F. Al-Turjman, “A Rational Data Delivery Framework for Disaster-inspired Internet of Nano-Things (IoNT) in Practice”, Springer Cluster Computing, vol. 22, no. 1, pp. 1751–1763, Nov. 2017.

5. I. Yaqoob et al., “Internet of Things architecture: Recent advances, taxonomy, requirements, and open challenges,” IEEE Wireless Communications, vol. 24, no. 3, pp. 10–16, Jun. 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3