Survivability-aware routing restoration mechanism for smart grid communication network in large-scale failures

Author:

Liu Bao JuORCID,Yu Peng,Xue-song Qiu,Shi Lei

Abstract

AbstractNatural disasters such as earthquakes have consecutive impacts on the smart grid because of aftershock activities. To guarantee service requirements and smart grid stable operations, it is a challenge to design a fast and survivable rerouting mechanism. There are few studies that consider concurrent rerouting aiming at multiple services in smart grid communication network, however. Firstly, we formulate the node survivability, link survivability, and path survivability model in terms of the distance from the epicenter to the node and the link of the network. Meanwhile, we introduce the indicator of site difference level which is unique in the smart grid to further restrict the service path. Secondly, to improve the algorithm efficiency and reduce rerouting time, the deep first search algorithm is utilized to obtain the available rerouting set, and then the I-DQN based on the framework of reinforcement learning is proposed to achieve concurrent rerouting for multiple services. The experimental results show that our approach has a better convergence performance and higher survivability as well as the approximate latency in comparison with other approaches.

Funder

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3