ENRN: A System for Evaluating Network Resilience against Natural Disasters

Author:

Alenazi Mohammed J. F.1ORCID

Affiliation:

1. Department of Computer Engineering, College of Computer and Information Sciences (CCIS), King Saud University, Riyadh 11451, Saudi Arabia

Abstract

The frequency and severity of natural disasters is surging, posing an urgent need for robust communication network infrastructure that is capable of withstanding these events. In this paper, we present a groundbreaking graph-theoretic system designed to evaluate and enhance network resilience in the face of natural disasters. Our solution harnesses the power of topological robustness metrics, integrating real-time weather data, geographic information, detailed network topology data, advanced resilience algorithms, and continuous network monitoring. The proposed scheme considers four major real-world U.S.-based network providers and evaluates their physical topologies against two major hurricanes. Our novel framework quantifies the important characteristics of network infrastructure; for instance, AT&T is identified to have fared better against Hurricane Ivan (57.98 points) than Hurricane Katrina (39.17 points). We not only provide current insights into network infrastructure resilience, but also uncover valuable findings that shed light on the performance of backbone U.S. networks during hurricanes. Furthermore, our findings provide actionable insights to enrich the overall survivability and functionality of communication networks, mitigating the adverse impacts of natural disasters on communication systems and critical services in terms of improving network resiliency via adding additional nodes and link or rewiring.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3