A novel two-phase cycle algorithm for effective cyber intrusion detection in edge computing

Author:

Gong YiguangORCID,Liu Yunping,Yin Chuanyang

Abstract

AbstractEdge computing extends traditional cloud services to the edge of the network, closer to users, and is suitable for network services with low latency requirements. With the rise of edge computing, its security issues have also received increasing attention. In this paper, a novel two-phase cycle algorithm is proposed for effective cyber intrusion detection in edge computing based on a multi-objective genetic algorithm (MOGA) and modified back-propagation neural network (MBPNN), namely TPC-MOGA-MBPNN. In the first phase, the MOGA is employed to build a multi-objective optimization model that tries to find the Pareto optimal parameter set for MBPNN. The Pareto optimal parameter set is applied for simultaneous minimization of the average false positive rate (Avg FPR), mean squared error (MSE) and negative average true positive rate (Avg TPR) in the dataset. In the second phase, some MBPNNs are created based on the parameter set obtained by MOGA and are trained to search for a more optimal parameter set locally. The parameter set obtained in the second phase is used as the input of the first phase, and the training process is repeated until the termination criteria are reached. A benchmark dataset, KDD cup 1999, is used to demonstrate and validate the performance of the proposed approach for intrusion detection. The proposed approach can discover a pool of MBPNN-based solutions. Combining these MBPNN solutions can significantly improve detection performance, and a GA is used to find the optimal MBPNN combination. The results show that the proposed approach achieves an accuracy of 98.81% and a detection rate of 98.23% and outperform most systems of previous works found in the literature. In addition, the proposed approach is a generalized classification approach that is applicable to the problem of any field having multiple conflicting objectives.

Funder

National Key Research and Development Program of China

Industry University Research Cooperation Project of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3