Short-term passenger flow forecast for urban rail transit based on multi-source data

Author:

Li WeiORCID,Sui Liying,Zhou Min,Dong Hairong

Abstract

AbstractShort-term passenger flow prediction in urban rail transit plays an important role because it in-forms decision-making on operation scheduling. However, passenger flow prediction is affected by many factors. This study uses the seasonal autoregressive integrated moving average model (SARIMA) and support vector machines (SVM) to establish a traffic flow prediction model. The model is built using intelligent data provided by a large-scale urban traffic flow warning system, such as accurate passenger flow data, collected using the Internet of things and sensor networks. The model proposed in this paper can adapt to the complexity, nonlinearity, and periodicity of passenger flow in urban rail transit. Test results on a Beijing traffic dataset show that the SARI-MA–SVM model can improve accuracy and reduce errors in traffic prediction. The obtained pre-diction fits well with the measured data. Therefore, the SARIMA–SVM model can fully charac-terize traffic variations and is suitable for passenger flow prediction.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Reference40 articles.

1. M. Zhou, H. Dong, B. Ning, F. Wang, Parallel urban rail transit stations for passenger emergency management. IEEE Intell. Syst. (2019). https://doi.org/10.1109/MIS.2019.2963192

2. X. Yu, F. Sun, X. Cheng, Intelligent urban traffic management system based on cloud computing and Internet of Things, in 2012 International Conference on Computer Science and Service System (2012), pp. 2169–2172

3. C. Luo, Y. Song, Subway security monitoring based on Internet of Things. J. Eng. Manag. 27, 35 (2013)

4. J.S.O. Neto, S.T. Kofuji, Inclusive smart city: expanding design possibilities for persons with disabilities in the urban space, in 2016 IEEE International Symposium on Consumer Electronics (ISCE) (2016), pp. 59–60

5. H. Zheng, W. Guo, N. Xiong, A kernel-based compressive sensing approach for mobile data gathering in wireless sensor network systems. IEEE Trans. Syst. Man Cybern. Syst. 48, 2315 (2018)

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3