Abstract
AbstractHyperspectral images not only have high spectral dimension, but the spatial size of datasets containing such kind of images is also small. Aiming at this problem, we design the NG-APC (non-gridding multi-level concatenated Atrous Pyramid Convolution) module based on the combined atrous convolution. By expanding the receptive field of three layers convolution from 7 to 45, the module can obtain a distanced combination of the spectral features of hyperspectral pixels and solve the gridding problem of atrous convolution. In NG-APC module, we construct a 15-layer Deep Convolutional Neural Networks (DCNN) model to classify each hyperspectral pixel. Through the experiments on the Pavia University dataset, the model reaches 97.9% accuracy while the parameter amount is only 0.25 M. Compared with other CNN algorithms, our method gets the best OA (Over All Accuracy) and Kappa metrics, at the same time, NG-APC module keeps good performance and high efficiency with smaller number of parameters.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Signal Processing
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献