Improving Feature Learning in Remote Sensing Images Using an Integrated Deep Multi-Scale 3D/2D Convolutional Network

Author:

Tinega Haron C.1ORCID,Chen Enqing1ORCID,Nyasaka Divinah O.2

Affiliation:

1. School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China

2. Department of Information Communication Technology, Kenya Forest Service, Nairobi 00100, Kenya

Abstract

Developing complex hyperspectral image (HSI) sensors that capture high-resolution spatial information and voluminous (hundreds) spectral bands of the earth’s surface has made HSI pixel-wise classification a reality. The 3D-CNN has become the preferred HSI pixel-wise classification approach because of its ability to extract discriminative spectral and spatial information while maintaining data integrity. However, HSI datasets are characterized by high nonlinearity, voluminous spectral features, and limited training sample data. Therefore, developing deep HSI classification methods that purely utilize 3D-CNNs in their network structure often results in computationally expensive models prone to overfitting when the model depth increases. In this regard, this paper proposes an integrated deep multi-scale 3D/2D convolutional network block (MiCB) for simultaneous low-level spectral and high-level spatial feature extraction, which can optimally train on limited sample data. The strength of the proposed MiCB model solely lies in the innovative arrangement of convolution layers, giving the network the ability (i) to simultaneously convolve the low-level spectral with high-level spatial features; (ii) to use multiscale kernels to extract abundant contextual information; (iii) to apply residual connections to solve the degradation problem when the model depth increases beyond the threshold; and (iv) to utilize depthwise separable convolutions in its network structure to address the computational cost of the proposed MiCB model. We evaluate the efficacy of our proposed MiCB model using three publicly accessible HSI benchmarking datasets: Salinas Scene (SA), Indian Pines (IP), and the University of Pavia (UP). When trained on small amounts of training sample data, MiCB is better at classifying than the state-of-the-art methods used for comparison. For instance, the MiCB achieves a high overall classification accuracy of 97.35%, 98.29%, and 99.20% when trained on 5% IP, 1% UP, and 1% SA data, respectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3