Aspirations, challenges, and open issues for software-based 5G networks in extremely dense and heterogeneous scenarios

Author:

M. Borges Vinicius C.,Cardoso Kleber Vieira,Cerqueira Eduardo,Nogueira Michele,Santos Aldri

Abstract

Abstract An upsurge of heterogeneous wireless devices and wide-ranging applications on extremely dense urban scenarios has led to challenging conditions that cannot be easily handled by 4G systems, such as the inefficient use of the frequency spectrum and the high energy consumption. In order to address those challenges, the 5G system design demands new architectures to cope with specific requirements, such as scalability, resilience, and energy efficiency. These requirements play a fundamental role in extremely dense scenarios. In addition, when jointly addressed, they have distinct priorities depending mainly on the specific user application demands. In this context, this article presents a management architecture for 5G system, called Wireless Software-basEd architecture for Extremely Dense networks (WiSEED). It is grounded on a software-based perspective of management and jointly manages three key operational services, as follows: routing, mobility, and spectrum usage. Such perspective of management is possible due to programmable network technologies, i.e., network function virtualization and software-defined networking. The architecture mainly intends to provide a better trade-off between the 5G requirements themselves and a high quality ubiquitous and seamless services, as well as efficient mobile broadband Internet for end users. Trace-driven simulation results from a case study show improvements when the management architecture is employed over conflicting requirements.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characterization of the Mobile User Profile Based on Sentiments and Network Usage Attributes;Journal of Internet Services and Applications;2022-12-27

2. A novel Internet of Things based fall detection system in smart home;International Journal of Intelligent Systems;2022-08-29

3. Secure D2D caching framework inspired on trust management and blockchain for Mobile Edge Caching;Pervasive and Mobile Computing;2021-10

4. Transition technologies towards 6G networks;EURASIP Journal on Wireless Communications and Networking;2021-04-21

5. Survey on Ultra-Dense Networks (UDNs) and Applied Stochastic Geometry;Wireless Personal Communications;2021-03-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3