Characterization of the Mobile User Profile Based on Sentiments and Network Usage Attributes

Author:

Morais Leonardo P. deORCID,Immich RogerORCID,Silva Nádia FélixORCID,Rosa Thierson CoutoORCID,Borges Vinicius da Cunha MartinsORCID

Abstract

Providing resources to meet user needs in futuristic mobile networks is still challenging since the network resources like spectrum and base stations do not increase in the same proportion as the accelerated growth of network traffic. Because of this, human/user behavior attributes can assist resource management in dealing with these challenges, which pick up aspects of how the user impacts the usage of mobile networks, such as network usage, the content of interest, urban mobility routines, social networks, and sentiment. A user profile is a combination of user/human behavior attributes. Such profiles are expected to be a knowledge for softwarization enablers to improve the management of future wireless networks fully. Nevertheless, the correlation between human sentiment and wireless and mobile network usage has not been deeply investigated in the literature about the mobile user profile. This work aims to define the user profile using a transfer learning approach for the sentiment classification of WhatsApp messages. A real-life experiment was conducted to collect users' attributes, namely the WhatsApp messages and network usage. A new data analysis methodology is proposed that consists of a frequent item-set pattern mining (FP-Growth) based on Association Rules, the Chi-squared statistical test, and descriptive statistics. This methodology assesses the correlation between sentiment and network usage in a profound way. Results show that the users participating in the experiment form three groups. The first group, with 55.6% of the users, contains users who present a strong relation between negative sentiment and low network usage and also a strong relation between positive sentiment and high network usage. The second group contains 25.9% of the users and is composed of userswho present a strong relation between positive sentiment and high network usage. The third group contains 18.5% of the users for whom the correlation between sentiment and network usage is still statistical significant, but the strength of this relation is much more weak then in the other two groups. Thus, 81.5% of the users (the first two groups) present a strong relation between user sentiment captured from WhatsApp messages and the network traffic generated by them.

Publisher

Sociedade Brasileira de Computacao - SB

Subject

Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3