Partitioning multi-layer edge network for neural network collaborative computing

Author:

Li Qiang,Zhou Ming-TuoORCID,Ren Tian-Feng,Jiang Cheng-Bin,Chen Yong

Abstract

AbstractThere is a trend to deploy neural network on edge devices in recent years. While the mainstream of research often concerns with single edge device processing and edge-cloud two-layer neural network collaborative computing, in this paper, we propose partitioning multi-layer edge network for neural network collaborative computing. With the proposed method, sub-models of neural network are deployed on multi-layer edge devices along the communication path from end users to cloud. Firstly, we propose an optimal path selection method to form a neural network collaborative computing path with lowest communication overhead. Secondly, we establish a time-delay optimization mathematical model to evaluate the effects of different partitioning solutions. To find the optimal partition solution, an ordered elitist genetic algorithm (OEGA) is proposed. The experimental results show that, compared with traditional cloud computing, single-device edge computing and edge-cloud collaborative computing, the proposed multi-layer edge network collaborative computing has a smaller runtime delay with limited bandwidth resources, and because of the pipeline computing characteristics, the proposed method has a better response speed when processing large number of requests. Meanwhile, the OEGA algorithm has better performance than conventional methods, and the optimized partitioning method outperforms other methods like random and evenly partition.

Funder

the National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3