Reconstructing and forecasting the COVID-19 epidemic in the United States using a 5-parameter logistic growth model

Author:

Chen Ding-GengORCID,Chen Xinguang,Chen Jenny K.

Abstract

Abstract Background Many studies have modeled and predicted the spread of COVID-19 (coronavirus disease 2019) in the U.S. using data that begins with the first reported cases. However, the shortage of testing services to detect infected persons makes this approach subject to error due to its underdetection of early cases in the U.S. Our new approach overcomes this limitation and provides data supporting the public policy decisions intended to combat the spread of COVID-19 epidemic. Methods We used Centers for Disease Control and Prevention data documenting the daily new and cumulative cases of confirmed COVID-19 in the U.S. from January 22 to April 6, 2020, and reconstructed the epidemic using a 5-parameter logistic growth model. We fitted our model to data from a 2-week window (i.e., from March 21 to April 4, approximately one incubation period) during which large-scale testing was being conducted. With parameters obtained from this modeling, we reconstructed and predicted the growth of the epidemic and evaluated the extent and potential effects of underdetection. Results The data fit the model satisfactorily. The estimated daily growth rate was 16.8% overall with 95% CI: [15.95, 17.76%], suggesting a doubling period of 4 days. Based on the modeling result, the tipping point at which new cases will begin to decline will be on April 7th, 2020, with a peak of 32,860 new cases on that day. By the end of the epidemic, at least 792,548 (95% CI: [789,162, 795,934]) will be infected in the U.S. Based on our model, a total of 12,029 cases were not detected between January 22 (when the first case was detected in the U.S.) and April 4. Conclusions Our findings demonstrate the utility of a 5-parameter logistic growth model with reliable data that comes from a specified period during which governmental interventions were appropriately implemented. Beyond informing public health decision-making, our model adds a tool for more faithfully capturing the spread of the COVID-19 epidemic.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,Health Policy,Health(social science),Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3