Abstract
With the aim of mitigating the damage caused by the coronavirus disease 2019 (COVID-19) pandemic, it is important to use models that allow forecasting possible new infections accurately in order to face the pandemic in specific sociocultural contexts in the best possible way. Our first contribution is empirical. We use an extensive COVID-19 dataset from nine Latin American countries for the period of 1 April 2020 to 31 December 2021. Our second and third contributions are methodological. We extend relevant (i) state-space models with score-driven dynamics and (ii) nonlinear state-space models with unobserved components, respectively. We use weekly seasonal effects, in addition to the local-level and trend filters of the literature, for (i) and (ii), and the negative binomial distribution for (ii). We find that the statistical and forecasting performances of the novel score-driven specifications are superior to those of the nonlinear state-space models with unobserved components model, providing a potential valid alternative to forecasting the number of possible new COVID-19 infections.
Funder
Universidad del Bío-Bío
Fondo de Apoyo a la Participación a Eventos Internacionales
Universidad Francisco Marroquín
FONDECYT
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference70 articles.
1. Barrado, D. (2022, December 01). Vivimos un Punto de Inflexión: La Generación 2020 y la Nueva Sociedad. Available online: https://telos.fundaciontelefonica.com/punto-de-inflexion-la-generacion-2020-y-la-nueva-sociedad/.
2. Norrie, P. (2016). A History of Disease in Ancient Times: More Lethal than War, Springer Nature.
3. The History of the Plague and the Research on the Causative Agent Versinia Pestis;Zietz;Int. J. Hyg. Envir. Heal.,2004
4. Origen de las Epidemias en la Conquista de América;Guerra;Quinto Centen.,1998
5. Desarrollo Histórico de la Epidemiología: Su Formación Como Disciplina Científica;Garrido;Salud Pública de México,2000