Conditional knockout of leptin receptor in neural stem cells leads to obesity in mice and affects neuronal differentiation in the hypothalamus early after birth

Author:

Ren Zhonggan,Liu Yitong,Hong Wentong,Pan Xinjie,Gong Pifang,Liu Qiong,Zhou Guomin,Qin SongORCID

Abstract

AbstractLeptin, secreted by peripheral adipocytes, binds the leptin receptor (Lepr) in the hypothalamus, thereby contributing to the regulation of satiety and body weight. Lepr is expressed in the embryonic brain as early as embryonic day 12.5. However, the function of Lepr in neural precursor cells in the brain has not been resolved. To address this issue, we crossed the Leprflox/flox mice with each of Shh-Cre mice (Shh, sonic hedgehog) and Nestin (Nes)-Cre mice. We found that deletion of Lepr specifically in nestin-expressing cells led to extreme obesity, but the conditional null of Lepr in Shh-expressing cells had no obvious phenotype. Moreover, the level of leptin-activated pSTAT3 decreased in the anterior and central subregions of the arcuate hypothalamus of Shh-Cre; Leprflox/flox mice compared with the controls. By contrast, in Nes-Cre; Leprflox/flox mice, the level of leptin-activated pSTAT3 decreased in all subregions including the anterior, central, and posterior arcuate hypothalamus as well as the dorsomedial, ventromedial, and median eminence of the hypothalamus, revealing that the extensive lack of Lepr in the differentiated neurons of the hypothalamus in the conditional null mice. Notably, conditional deletion of Lepr in nestin-expressing cells enhanced the differentiation of neural precursor cells into neurons and oligodendroglia but inhibited differentiation into astrocytes early in postnatal development of hypothalamus. Our results suggest that Lepr expression in neural precursor cells is essential for maintaining normal body weight as well as the differentiation of neural precursor cells to the neural/glial fate in the hypothalamus shortly after birth.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3