Author:
Finley Stacey D,Broadbelt Linda J,Hatzimanikatis Vassily
Abstract
Abstract
Background
Bioremediation offers a promising pollution treatment method in the reduction and elimination of man-made compounds in the environment. Computational tools to predict novel biodegradation pathways for pollutants allow one to explore the capabilities of microorganisms in cleaning up the environment. However, given the wealth of novel pathways obtained using these prediction methods, it is necessary to evaluate their relative feasibility, particularly within the context of the cellular environment.
Results
We have utilized a computational framework called BNICE to generate novel biodegradation routes for 1,2,4-trichlorobenzene (1,2,4-TCB) and incorporated the pathways into a metabolic model for Pseudomonas putida. We studied the cellular feasibility of the pathways by applying metabolic flux analysis (MFA) and thermodynamic constraints. We found that the novel pathways generated by BNICE enabled the cell to produce more biomass than the known pathway. Evaluation of the flux distribution profiles revealed that several properties influenced biomass production: 1) reducing power required, 2) reactions required to generate biomass precursors, 3) oxygen utilization, and 4) thermodynamic topology of the pathway. Based on pathway analysis, MFA, and thermodynamic properties, we identified several promising pathways that can be engineered into a host organism to accomplish bioremediation.
Conclusions
This work was aimed at understanding how novel biodegradation pathways influence the existing metabolism of a host organism. We have identified attractive targets for metabolic engineers interested in constructing a microorganism that can be used for bioremediation. Through this work, computational tools are shown to be useful in the design and evaluation of novel xenobiotic biodegradation pathways, identifying cellularly feasible degradation routes.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Modelling and Simulation,Structural Biology
Reference58 articles.
1. Dua M, Singh A, Sethunathan N, Johri AK: Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol. 2002, 59: 143-152. 10.1007/s00253-002-1024-6
2. Paul D, Pandey G, Pandey J, Jain RK: Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol. 2005, 23: 135-142. 10.1016/j.tibtech.2005.01.001
3. Jain RK, Kapur M, Labana S, Lal B, PM S, Bhattacharya D, Thakur IS: Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Curr Sci. 2005, 89: 101-112.
4. Schroll R, Brahushi R, Dorfler U, Kuhn S, Fekete J, Munch JC: Biomineralisation of 1, 2, 4-trichlorobenzene in soils by an adapted microbial population. Environ Pollut. 2004, 127: 395-401. 10.1016/j.envpol.2003.08.012
5. Meer van der JR: A genomic view on the evolution of catabolic pathways and bacterial adaptation to xenobiotic compounds. Microbial biodegradation: Genomics and molecular biology. Edited by: Diaz E. 2008, Norfolk, UK: Caister Academic Press
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献