Can single knockouts accurately single out gene functions?
-
Published:2008-06-18
Issue:1
Volume:2
Page:
-
ISSN:1752-0509
-
Container-title:BMC Systems Biology
-
language:en
-
Short-container-title:BMC Syst Biol
Author:
Deutscher David,Meilijson Isaac,Schuster Stefan,Ruppin Eytan
Abstract
Abstract
Background
When analyzing complex biological systems, a major objective is localization of function – assessing how much each element contributes to the execution of specific tasks. To establish causal relationships, knockout and perturbation studies are commonly executed. The vast majority of studies perturb a single element at a time, yet one may hypothesize that in non-trivial biological systems single-perturbations will fail to reveal the functional organization of the system, owing to interactions and redundancies.
Results
We address this fundamental gap between theory and practice by quantifying how misleading the picture arising from classical single-perturbation analysis is, compared with the full multiple-perturbations picture. To this end we use a combination of a novel approach for quantitative, rigorous multiple-knockouts analysis based on the Shapley value from game theory, with an established in-silico model of Saccharomyces cerevisiae metabolism. We find that single-perturbations analysis misses at least 33% of the genes that contribute significantly to the growth potential of this organism, though the essential genes it does find are responsible for most of the growth potential. But when assigning gene contributions for individual metabolic functions, the picture arising from single-perturbations is severely lacking and a multiple-perturbations approach turns out to be essential.
Conclusion
The multiple-perturbations investigation yields a significantly richer and more biologically plausible functional annotation of the genes comprising the metabolic network of the yeast.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Modelling and Simulation,Structural Biology
Reference37 articles.
1. Pearl J: Causality Models, Reasoning, and Inference. 2000, Cambridge: University of Cambridge Press 2. Pe'er D, Regev A, Elidan G, Friedman N: Inferring subnetworks from perturbed expression profiles. Bioinformatics. 2000, 17 (Suppl 1): S215-S224. 3. Chen L, Emmert-Streib F, Storey J: Harnessing naturally randomized transcription to infer regulatory relationships among genes. Genome Biol. 2007, 8 (10): R219- 4. Carpenter AE, Sabatini DM: Systematic Genome-Wide Screens Of Gene Function. Nat Rev Genet. 2004, 5 (1): 11-22. 5. Giaever G, Chu A, Ni L, Connelly C, Riles L, Véronneau S, Dow S, Lucau-Danila A, Anderson K, André B, Arkin A, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian K, Flaherty P, Foury F, Garfinkel D, Gerstein M, Gotte D, Güldener U, Hegemann J, Hempel S, Herman Z, Jaramillo D, Kelly D, Kelly S, Kötter P, LaBonte D, Lamb D, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi S, Revuelta J, Roberts C, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker D, Sookhai-Mahadeo S, Storms R, Strathern J, Valle G, Voet M, Volckaert G, Wang C, Ward T, Wilhelmy J, Winzeler E, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke J, Snyder M, Philippsen P, Davis R, Johnston M: Functional profiling of the Saccharomyces cerevisiae genome. Nature. 2002, 418 (6896): 387-391.
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|