Integrated pathway modules using time-course metabolic profiles and EST data from Milnesium tardigradum

Author:

Beisser Daniela,Grohme Markus A,Kopka Joachim,Frohme Marcus,Schill Ralph O,Hengherr Steffen,Dandekar Thomas,Klau Gunnar W,Dittrich Marcus,Müller Tobias

Abstract

Abstract Background Tardigrades are multicellular organisms, resistant to extreme environmental changes such as heat, drought, radiation and freezing. They outlast these conditions in an inactive form (tun) to escape damage to cellular structures and cell death. Tardigrades are apparently able to prevent or repair such damage and are therefore a crucial model organism for stress tolerance. Cultures of the tardigrade Milnesium tardigradum were dehydrated by removing the surrounding water to induce tun formation. During this process and the subsequent rehydration, metabolites were measured in a time series by GC-MS. Additionally expressed sequence tags are available, especially libraries generated from the active and inactive state. The aim of this integrated analysis is to trace changes in tardigrade metabolism and identify pathways responsible for their extreme resistance against physical stress. Results In this study we propose a novel integrative approach for the analysis of metabolic networks to identify modules of joint shifts on the transcriptomic and metabolic levels. We derive a tardigrade-specific metabolic network represented as an undirected graph with 3,658 nodes (metabolites) and 4,378 edges (reactions). Time course metabolite profiles are used to score the network nodes showing a significant change over time. The edges are scored according to information on enzymes from the EST data. Using this combined information, we identify a key subnetwork (functional module) of concerted changes in metabolic pathways, specific for de- and rehydration. The module is enriched in reactions showing significant changes in metabolite levels and enzyme abundance during the transition. It resembles the cessation of a measurable metabolism (e.g. glycolysis and amino acid anabolism) during the tun formation, the production of storage metabolites and bioprotectants, such as DNA stabilizers, and the generation of amino acids and cellular components from monosaccharides as carbon and energy source during rehydration. Conclusions The functional module identifies relationships among changed metabolites (e.g. spermidine) and reactions and provides first insights into important altered metabolic pathways. With sparse and diverse data available, the presented integrated metabolite network approach is suitable to integrate all existing data and analyse it in a combined manner.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Modeling and Simulation,Structural Biology

Reference63 articles.

1. Spallanzani L: Opuscoli di Fisica Animale e Vegetabile. Modena: Società Tipografica 1776, 203-285.

2. Baumann H: Die Anabiose der Tardigraden. Zool Jahrb 1922, 45: 501-556.

3. Rahm P: Effect of very low temperatures on the fauna of moss. Proc K Ned AkadWet Ser C Biol Med Sci 1921, 23: 235-248.

4. Schill R: Anhydrobiotic Abilities of Tardigrades. In Dormancy and Resistance in Harsh Environments, Volume 21 of Topics in Current Genetics. Edited by: Lubzens E, Cerda J, Clark M. Heidelberg: Springer Berlin; 2010:133-146. [http://dx.doi.org/10.1007/978-3-642-12422-8∖_8]

5. Clegg JS: Cryptobiosis–a peculiar state of biological organization. Comp Biochem Physiol B Biochem Mol Biol 2001,128(4):613-624. 10.1016/S1096-4959(01)00300-1

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3