Abstract
AbstractTardigrades are among the most stress tolerant animals and survived even unassisted exposure to space in low earth orbit. Still, the adaptations leading to these unusual physiological features remain unclear. Even the phylogenetic position of this phylum within the Ecdysozoa is unclear. Complete genome sequences might help to address these questions as genomic adaptations can be revealed and phylogenetic reconstructions can be based on new markers. Here, we present a first draft genome of a species from the family Milnesiidae, namely Milnesium tardigradum. We consistently place M. tardigradum and the two previously sequenced Hypsibiidae species, Hypsibius dujardini and Ramazzottius varieornatus, as sister group of the nematodes with the arthropods as outgroup. Based on this placement, we identify a massive gene loss thus far attributed to the nematodes which predates their split from the tardigrades. We provide a comprehensive catalog of protein domain expansions linked to stress response and show that previously identified tardigrade-unique proteins are erratically distributed across the genome of M. tardigradum. We further suggest alternative pathways to cope with high stress levels that are yet unexplored in tardigrades and further promote the phylum Tardigrada as a rich source of stress protection genes and mechanisms.
Publisher
Cold Spring Harbor Laboratory
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献