Protein-protein interaction as a predictor of subcellular location

Author:

Shin Chang Jin,Wong Simon,Davis Melissa J,Ragan Mark A

Abstract

Abstract Background Many biological processes are mediated by dynamic interactions between and among proteins. In order to interact, two proteins must co-occur spatially and temporally. As protein-protein interactions (PPIs) and subcellular location (SCL) are discovered via separate empirical approaches, PPI and SCL annotations are independent and might complement each other in helping us to understand the role of individual proteins in cellular networks. We expect reliable PPI annotations to show that proteins interacting in vivo are co-located in the same cellular compartment. Our goal here is to evaluate the potential of using PPI annotation in determining SCL of proteins in human, mouse, fly and yeast, and to identify and quantify the factors that contribute to this complementarity. Results Using publicly available data, we evaluate the hypothesis that interacting proteins must be co-located within the same subcellular compartment. Based on a large, manually curated PPI dataset, we demonstrate that a substantial proportion of interacting proteins are in fact co-located. We develop an approach to predict the SCL of a protein based on the SCL of its interaction partners, given sufficient confidence in the interaction itself. The frequency of false positive PPIs can be reduced by use of six lines of supporting evidence, three based on type of recorded evidence (empirical approach, multiplicity of databases, and multiplicity of literature citations) and three based on type of biological evidence (inferred biological process, domain-domain interactions, and orthology relationships), with biological evidence more-effective than recorded evidence. Our approach performs better than four existing prediction methods in identifying the SCL of membrane proteins, and as well as or better for soluble proteins. Conclusion Understanding cellular systems requires knowledge of the SCL of interacting proteins. We show how PPI data can be used more effectively to yield reliable SCL predictions for both soluble and membrane proteins. Scope exists for further improvement in our understanding of cellular function through consideration of the biological context of molecular interactions.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Modeling and Simulation,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3