MEM‐FET: Essential protein prediction using membership feature and machine learning approach

Author:

Payra Anjan Kumar1ORCID,Saha Banani2,Ghosh Anupam3ORCID

Affiliation:

1. Department of Computer Science and Engineering Dr. Sudhir Chandra Sur Degree Engineering College Kolkata India

2. Department of Computer Science and Engineering University of Calcutta Kolkata India

3. Department of Computer Science and Engineering Netaji Subhash Engineering College Kolkata India

Abstract

AbstractProteins are played key roles in different functionalities in our daily life. All functional roles of a protein are a bit enhanced in interaction compared to individuals. Identification of essential proteins of an organism is a time consume and costly task during observation in the wet lab. The results of observation in wet lab always ensure high reliability and accuracy in the biological ground. Essential protein prediction using computational approaches is an alternative choice in research. It proves its significance rapidly in day‐to‐day life as well as reduces the experimental cost of wet lab effectively. Existing computational methods were implemented using Protein interaction networks (PPIN), Sequence, Gene Expression Dataset (GED), Gene Ontology (GO), Orthologous groups, and Subcellular localized datasets. Machine learning has diverse categories of features that enable to model and predict essential macromolecules of understudied organisms. A novel methodology MEM‐FET (membership feature) is predicted based on features, that is, edge clustering coefficient, Average clustering coefficient, subcellular localization, and Gene Ontology within a compartment of common neighbors. The accuracy (ACC) values of the predicted true positive (TP) essential proteins are 0.79, 0.74, 0.78, and 0.71 for YHQ, YMIPS, YDIP, and YMBD datasets. An enriched set of essential proteins are also predicted using the MEM‐FET algorithm. Ensemble ML also validated the proposed model with an accuracy of 60%. It has been predicted that MEM‐FET algorithms outperform other existing algorithms with an ACC value of 80% for the yeast dataset.

Publisher

Wiley

Subject

Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3