Author:
Wu Xi,Li Peng,Wang Nan,Gong Ping,Perkins Edward J,Deng Youping,Zhang Chaoyang
Abstract
Abstract
Background
State Space Model (SSM) is a relatively new approach to inferring gene regulatory networks. It requires less computational time than Dynamic Bayesian Networks (DBN). There are two types of variables in the linear SSM, observed variables and hidden variables. SSM uses an iterative method, namely Expectation-Maximization, to infer regulatory relationships from microarray datasets. The hidden variables cannot be directly observed from experiments. How to determine the number of hidden variables has a significant impact on the accuracy of network inference. In this study, we used SSM to infer Gene regulatory networks (GRNs) from synthetic time series datasets, investigated Bayesian Information Criterion (BIC) and Principle Component Analysis (PCA) approaches to determining the number of hidden variables in SSM, and evaluated the performance of SSM in comparison with DBN.
Method
True GRNs and synthetic gene expression datasets were generated using GeneNetWeaver. Both DBN and linear SSM were used to infer GRNs from the synthetic datasets. The inferred networks were compared with the true networks.
Results
Our results show that inference precision varied with the number of hidden variables. For some regulatory networks, the inference precision of DBN was higher but SSM performed better in other cases. Although the overall performance of the two approaches is compatible, SSM is much faster and capable of inferring much larger networks than DBN.
Conclusion
This study provides useful information in handling the hidden variables and improving the inference precision.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Modeling and Simulation,Structural Biology
Reference18 articles.
1. Murphy K, Mian S: Modeling gene expression data using dynamic Bayesian networks. Technical Report, Computer Science Division, University of California, Berkeley, CA. 1999
2. Zou M, Conzen SD: A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics. 2005, 21: 71-79. 10.1093/bioinformatics/bth463.
3. Shmulevich I, Dougherty ER, Kim S, Zhang W: Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks. Bioinformatics. 2002, 18 (2): 261-274. 10.1093/bioinformatics/18.2.261.
4. Wu FX: Gene regulatory network modelling: a state-space approach. Int J Data Mining and Bioinformatics. 2008, 2 (1): 1-14. 10.1504/IJDMB.2008.016753.
5. Rangel C, Angus J, Ghahramani Z, Lioumi M, Sotheran E, Gaiba A, Wild DL, Falciani F: Modeling T-cell activation using gene expression profiling and state space modeling. Bioinformatics. 2004, 20 (9): 1361-1372. 10.1093/bioinformatics/bth093.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献