Specific mutations in H5N1 mainly impact the magnitude and velocity of the host response in mice
-
Published:2013-07-29
Issue:1
Volume:7
Page:
-
ISSN:1752-0509
-
Container-title:BMC Systems Biology
-
language:en
-
Short-container-title:BMC Syst Biol
Author:
Tchitchek Nicolas,Eisfeld Amie J,Tisoncik-Go Jennifer,Josset Laurence,Gralinski Lisa E,Bécavin Christophe,Tilton Susan C,Webb-Robertson Bobbie-Jo,Ferris Martin T,Totura Allison L,Li Chengjun,Neumann Gabriele,Metz Thomas O,Smith Richard D,Waters Katrina M,Baric Ralph,Kawaoka Yoshihiro,Katze Michael G
Abstract
Abstract
Background
Influenza infection causes respiratory disease that can lead to death. The complex interplay between virus-encoded and host-specific pathogenicity regulators – and the relative contributions of each toward viral pathogenicity – is not well-understood.
Results
By analyzing a collection of lung samples from mice infected by A/Vietnam/1203/2004 (H5N1; VN1203), we characterized a signature of transcripts and proteins associated with the kinetics of the host response. Using a new geometrical representation method and two criteria, we show that inoculation concentrations and four specific mutations in VN1203 mainly impact the magnitude and velocity of the host response kinetics, rather than specific sets of up- and down- regulated genes. We observed analogous kinetic effects using lung samples from mice infected with A/California/04/2009 (H1N1), and we show that these effects correlate with morbidity and viral titer.
Conclusions
We have demonstrated the importance of the kinetics of the host response to H5N1 pathogenesis and its relationship with clinical disease severity and virus replication. These kinetic properties imply that time-matched comparisons of ‘omics profiles to viral infections give limited views to differentiate host-responses. Moreover, these results demonstrate that a fast activation of the host-response at the earliest time points post-infection is critical for protective mechanisms against fast replicating viruses.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Modeling and Simulation,Structural Biology
Reference69 articles.
1. Herfst S, Schrauwen EJA, Linster M, Chutinimitkul S, de Wit E, Munster VJ, Sorrell EM, Bestebroer TM, Burke DF, Smith DJ, Rimmelzwaan GF, Osterhaus ADME, Fouchier RAM: Airborne transmission of influenza A/H5N1 virus between ferrets. Science (New York, NY). 2012, 336: 1534-1541. 10.1126/science.1213362. 2. Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, Zhong G, Hanson A, Katsura H, Watanabe S, Li C, Kawakami E, Yamada S, Kiso M, Suzuki Y, Maher EA, Neumann G, Kawaoka Y: Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature. 2012, 486: 420-428. 3. Russell CA, Fonville JM, Brown AEX, Burke DF, Smith DL, James SL, Herfst S, van Boheemen S, Linster M, Schrauwen EJ, Katzelnick L, Mosterín A, Kuiken T, Maher E, Neumann G, Osterhaus ADME, Kawaoka Y, Fouchier RAM, Smith DJ: The potential for respiratory droplet-transmissible A/H5N1 influenza virus to evolve in a mammalian host. Science (New York, NY). 2012, 336: 1541-1547. 10.1126/science.1222526. 4. Hatta M, Gao P, Halfmann P, Kawaoka Y: Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science (New York, NY). 2001, 293: 1840-1842. 10.1126/science.1062882. 5. Hatta M, Hatta Y, Kim JH, Watanabe S, Shinya K, Nguyen T, Lien PS, Le QM, Kawaoka Y: Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice. PLoS Pathog. 2007, 3: 1374-1379.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|