Author:
Lo Kenneth,Raftery Adrian E,Dombek Kenneth M,Zhu Jun,Schadt Eric E,Bumgarner Roger E,Yeung Ka Yee
Abstract
Abstract
Background
Inference about regulatory networks from high-throughput genomics data is of great interest in systems biology. We present a Bayesian approach to infer gene regulatory networks from time series expression data by integrating various types of biological knowledge.
Results
We formulate network construction as a series of variable selection problems and use linear regression to model the data. Our method summarizes additional data sources with an informative prior probability distribution over candidate regression models. We extend the Bayesian model averaging (BMA) variable selection method to select regulators in the regression framework. We summarize the external biological knowledge by an informative prior probability distribution over the candidate regression models.
Conclusions
We demonstrate our method on simulated data and a set of time-series microarray experiments measuring the effect of a drug perturbation on gene expression levels, and show that it outperforms leading regression-based methods in the literature.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Modeling and Simulation,Structural Biology
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献