Abstract
Abstract
Purpose
In this study, an aqueous two-phase micellar system (ATPMS), formed by the non-ionic surfactant Triton X-114, was used to investigate the partitioning of cellulolytic enzymes produced by the filamentous fungus Aspergillus fumigatus CCT 7873.
Methods
Performance of the ATPMS on the partitioning of CMCase (activity on carboxymethyl cellulose) and FPase (activity on filter paper) was investigated by varying the temperature (35, 40, 45, 50, 55, 60, and 65 °C), enzyme crude extract concentration (20, 40, 60, and 80% w/w), and Triton X-114 concentration (2, 4, 6, and 8% w/w) and by adding different inorganic salts (NaCl, CaCl2, MgSO4, and MnSO4) in the system.
Results
An ATPMS formed with 8% (w/w) Triton X-114 and 40% (w/w) enzymatic crude extract at a system temperature of 55 °C was most favorable for partitioning the tested enzymes. Under these conditions, a purification factor for CMCase and FPase of 10.89 and 0.65 was reached, respectively. The addition of inorganic salts changed the distribution of enzymes. Of these, CaCl2 contributed to a higher distribution coefficient (50.0), whereas for FPase, the presence of MnSO4 in the system improved the purification factor to 3.94.
Conclusion
The highest values obtained for the yield and purification factors demonstrate that ATPMS is an interesting option for recovering and purifying cellulolytic enzymes.
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献