Expression of a highly active β-glucosidase from Aspergillus niger AS3.4523 in Escherichia coli and its application in gardenia blue preparation

Author:

Hao Shuai,Liu Yuanpu,Qin Yu,Zhao Lei,Zhang Jiawen,Wu Tingting,Sun Baoguo,Wang Chengtao

Abstract

Abstract Purpose Gardenia blue is one of the natural food additives used in East Asia for many years. Its biosynthesis relies on a key rate-limiting cellulase: β-glucosidase (BGL), which mainly exists in Aspergillus niger (A. niger) cells. The purpose of this study was to obtain active β-glucosidase by cell engineering method and applied to gardenia blue synthesis, which would help to promote the application and reduce the cost of β-glucosidase and gardenia blue. Methods A. niger was identified based on 18S rRNA gene sequencing. β-Glucosidase gene was cloned and expressed based on PCR and prokaryotic expression. The enzyme activity of β-glucosidase was measured based on p-nitrophenyl-β-D-glucopyranoside method. Results An A. niger isolate (AS3.4523) was identified from soil. The β-glucosidase gene of AS3.4523 was cloned and sequenced, which encoded a new type of β-glucosidase mutant containing two specific amino acid substitutions (Asp154Gly and Ser163Pro). Prokaryotic expression of wild-type β-glucosidase in Escherichia coli BL21 showed low cellulase activity (0.29 ± 0.13 U/mL). However, after removing its signal peptide, the β-glucosidase of A. niger AS3.4523 exhibited extremely higher activity (25.88 ± 0.45 U/mL) compared with wild type β-glucosidase (12.59 ± 1.07 U/mL) or other A. niger strains M85 (3.61 ± 0.24 U/mL) and CICC2041 (4.36 ± 0.76 U/mL). Furthermore, recombinant β-glucosidase was applied to geniposide hydrolysis, and gardenia blue pigment was successfully synthesized with the reaction of genipin and Lys. Conclusions This work has discovered a new type of highly active β-glucosidase and provided a theoretical basis for large-scale producing β-glucosidase, which lays a brand-new foundation for gardenia blue preparation with high efficiency and low cost.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3