Tracking strategic developments for conferring xylose utilization/fermentation by Saccharomyces cerevisiae

Author:

Sharma Shalley,Arora Anju

Abstract

Abstract Purpose Efficient ethanol production through lignocellulosic biomass hydrolysates could solve energy crisis as it is economically sustainable and ecofriendly. Saccharomyces cerevisiae is the work horse for lignocellulosic bioethanol production at industrial level. But its inability to ferment and utilize xylose limits the overall efficacy of the process. Method Data for the review was selected using different sources, such as Biofuels digest, Statista, International energy agency (IEA). Google scholar was used as a search engine to search literature for yeast metabolic engineering approaches. Keywords used were metabolic engineering of yeast for bioethanol production from lignocellulosic biomass. Result Through these approaches, interconnected pathways can be targeted randomly. Moreover, the improved strains genetic makeup can help us understand the mechanisms involved for this purpose. Conclusion This review discusses all possible approaches for metabolic engineering of yeast. These approaches may reveal unknown hidden mechanisms and construct ways for the researchers to produce novel and modified strains.

Funder

National Bureau of Agriculturally Important Microorganisms

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3