Prospective and retrospective performance assessment of Advanced Driver Assistance Systems in imminent collision scenarios: the CMI-Vr approach

Author:

Gulino Michelangelo S.ORCID,Fiorentino Anita,Vangi Dario

Abstract

Structured abstract Introduction Prospective and retrospective performance assessment of Advanced Driver Assistance Systems (ADASs) is fundamental to pilot future enhancements for active safety devices. In critical road scenarios between two vehicles where ADAS activation enables collision mitigation only, currently available assessment methodologies rely on the reconstruction of the impact phase consequent to the specific intervention on braking and steering: the velocity change sustained by the vehicle in the collision ($$\Delta V$$ Δ V ) is retrieved, so that IR decrease for the vehicle occupants can be obtained by appropriate Injury Risk (IR) models. However, information regarding the ADAS performance is available only after the impact phase reconstruction and not just as when the criticality occurs in the pre-impact phase: the best braking and steering alternative cannot be immediately envisaged, since a direct correlation lacks between the braking/steering intervention and IR. Method This work highlights an ADAS performance assessment method based on the disaggregation of $$\Delta V$$ Δ V in the two pre-impact parameters closing velocity at collision ($$V_r$$ V r ) and impact eccentricity, represented by the Crash Momentum Index (CMI). Such a disaggregation leads to the determination of IR based solely on impact configuration between the vehicles, without directly considering the impact phase. The performance of diverse ADASs in terms of intervention logic are directly comparable based on the resulting impact configuration, associated with a single coordinate in the CMI-$$V_r$$ V r plane and a sole IR value as a consequence. Results The CMI-$$V_r$$ V r approach is employable for both purposes of prospective and retrospective performance assessment of ADAS devices. To illustrate the advantages of the methodology, a solution for prospective assessment based on the CMI-$$V_r$$ V r plane is initially proposed and applied to case studies: this provides direct suggestions regarding the most appropriate interventions on braking and steering for IR minimization, fundamental in the tuning or development phase of an ADAS. A method for retrospective assessment is ultimately contextualized in the EuroNCAP “Car-to-Car Rear moving” test for an Inter-Urban Autonomous Emergency Braking system, a device implemented on a significant portion of the circulating fleet. Conclusions Based on the evidenced highlights, it is demonstrated that the approach provides complementary information compared to well-established performance assessment methodologies in all stages of an ADAS life cycle, by suggesting a direct physical connection in the pre-impact phase between the possible ADAS interventions and the foreseeable injury outcomes.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Transportation,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3