Efficient genome editing in grapevine using CRISPR/LbCas12a system

Author:

Ren Chong,Gathunga Elias Kirabi,Li Xue,Li Huayang,Kong Junhua,Dai Zhanwu,Liang ZhenchangORCID

Abstract

AbstractClustered regularly interspaced short palindromic repeats (CRISPR) /Cas12a system, also known as CRISPR/Cpf1, has been successfully harnessed for genome engineering in many plants, but not in grapevine yet. Here we developed and demonstrated the efficacy of CRISPR/Cas12a from Lachnospiraceae bacterium ND2006 (LbCas12a) in inducing targeted mutagenesis by targeting the tonoplastic monosaccharide transporter1 (TMT1) and dihydroflavonol-4-reductase 1 (DFR1) genes in 41B cells. Knockout of DFR1 gene altered flavonoid accumulation in dfr1 mutant cells. Heat treatment (34℃) improved the editing efficiencies of CRISPR/LbCas12a system, and the editing efficiencies of TMT1-crRNA1 and TMT1-crRNA2 increased from 35.3% to 44.6% and 29.9% to 37.3% after heat treatment, respectively. Moreover, the sequences of crRNAs were found to be predominant factor affecting editing efficiencies irrespective of the positions within the crRNA array designed for multiplex genome editing. In addition, genome editing with truncated crRNAs (trucrRNAs) showed that trucrRNAs with 20 nt guide sequences were as effective as original crRNAs with 24 nt guides in generating targeted mutagenesis, whereas trucrRNAs with shorter regions of target complementarity ≤ 18 nt in length may not induce detectable mutations in 41B cells. All these results provide evidence for further applications of CRISPR/LbCas12a system in grapevine as a powerful tool for genome engineering. Graphical Abstract

Funder

State Key Laboratory of Drug Research, Chinese Academy of Sciences

National Natural Science Foundation of China

Three-Side Innovation Projects for Aquaculture in Jiangsu Province

Youth Innovation Promotion Association CAS

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CRISPR/Cas as a Genome-Editing Technique in Fruit Tree Breeding;International Journal of Molecular Sciences;2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3