Abstract
AbstractMelon (C. melo L.) is an economically important vegetable crop cultivated worldwide. The melon collection in the U.S. National Plant Germplasm System (NPGS) is a valuable resource to conserve natural genetic diversity and provide novel traits for melon breeding. Here we use the genotyping-by-sequencing (GBS) technology to characterize 2083 melon accessions in the NPGS collected from major melon production areas as well as regions where primitive melons exist. Population structure and genetic diversity analyses suggested that C. melo ssp. melo was firstly introduced from the centers of origin, Indian and Pakistan, to Central and West Asia, and then brought to Europe and Americas. C. melo ssp. melo from East Asia was likely derived from C. melo ssp. agrestis in India and Pakistan and displayed a distinct genetic background compared to the rest of ssp. melo accessions from other geographic regions. We developed a core collection of 383 accessions capturing more than 98% of genetic variation in the germplasm, providing a publicly accessible collection for future research and genomics-assisted breeding of melon. Thirty-five morphological characters investigated in the core collection indicated high variability of these characters across accessions in the collection. Genome-wide association studies using the core collection panel identified potentially associated genome regions related to fruit quality and other horticultural traits. This study provides insights into melon origin and domestication, and the constructed core collection and identified genome loci potentially associated with important traits provide valuable resources for future melon research and breeding.
Funder
National Institute of Food and Agriculture
Publisher
Springer Science and Business Media LLC
Reference47 articles.
1. Akashi Y, Fukuda N, Wako T, Masuda M, Kato K. Genetic variation and phylogenetic relationships in east and south Asian melons, Cucumis melo L., based on the analysis of five isozymes. Euphytica. 2002;125(3):385–96. https://doi.org/10.1023/A:1016086206423.
2. Argyris JM, Diaz A, Ruggieri V, Fernandez M, Jahrmann T, Gibon Y, et al. QTL analyses in multiple populations employed for the fine mapping and identification of candidate genes at a locus affecting sugar accumulation in melon (Cucumis melo L.). Front Plant Sci. 2017;8:1679.
3. Balding DJ, Nichols RA. A method for quantifying differentiation between populations at multi-allelic loci and its implications for investigating identity and paternity. Genetica. 1995;96(1-2):3-12. https://doi.org/10.1007/BF01441146.
4. Boualem A, Fergany M, Fernandez R, Troadec C, Martin A, Morin H, et al. A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science. 2008;321(5890):836–8. https://doi.org/10.1126/science.1159023.
5. Brickell CD, Alexander C, David JC, Hetterscheid WLA, Leslie AC, Malecot V, et al. New edition of the international code of nomenclature for cultivated plants. Scripta Horticulturae. 2009;10:184.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献