Identification of Chromosomal Regions and Candidate Genes for Round leaf Locus in Cucumis melo L.

Author:

Fang Xufeng12ORCID,Zhu Zicheng12,Li Junyan12,Wang Xuezheng12,Wei Chunhua3ORCID,Zhang Xian3,Dai Zuyun4,Liu Shi2ORCID,Luan Feishi1ORCID

Affiliation:

1. Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China

2. College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China

3. College of Horticulture, Northwest A&F University, Xianyang 712100, China

4. Anhui Jianghuai Horticulture Technology Co., Ltd., Hefei 230031, China

Abstract

Leaf morphology plays a crucial role in plant classification and provides a significant model for studying plant diversity while directly impacting photosynthetic efficiency. In the case of melons, leaf shape not only influences production and classification but also represents a key genetic trait that requires further exploration. In this study, we utilized forward genetics to pinpoint a recessive locus, dubbed Cmrl (Round leaf), which is responsible for regulating melon leaf shape. Through bulked segregant analysis sequencing and extensive evaluation of a two-year F2 population, we successfully mapped the Cmrl locus to a 537.07 kb region on chromosome 8 of the melon genome. Subsequent genetic fine-mapping efforts, leveraging a larger F2 population encompassing 1322 plants and incorporating F2:3 phenotypic data, further refined the locus to an 80.27 kb interval housing five candidate genes. Promoter analysis and coding sequence cloning confirmed that one of these candidates, MELO3C019152.2 (Cmppr encoding a pentatricopeptide repeat-containing family protein, Cmppr), stands out as a strong candidate gene for the Cmrl locus. Notably, comparisons of Cmrl expressions across various stages of leaf development and different leaf regions suggest a pivotal role of Cmrl in the morphogenesis of melon leaves.

Funder

Taishan Industrial Leading Talents Project

Key Program of National Natural Science Foundation of China

Outstanding Youth Fund of Heilongjiang Province

China Agriculture Research System of MOF and MARA

Collaborative Foundation of Heilongjiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3