Cataract disease classification from fundus images with transfer learning based deep learning model on two ocular disease datasets

Author:

ÇETİNER Halit1ORCID

Affiliation:

1. ISPARTA UYGULAMALI BİLİMLER ÜNİVERSİTESİ, TEKNİK BİLİMLER MESLEK YÜKSEKOKULU

Abstract

Cataract is one of the most serious eye diseases that can blind if left untreated. Detection of the disease in the early stages rather than in the advanced stages can prevent the patient from being blind. At this point, suspected patients should be constantly checked. Continuous control and follow-up of patients is a tiring and laborious process. For the reasons stated, two different deep learning models are proposed in this article that can be used in the diagnosis and detection of cataracts to assist the work and procedures of ophthalmologists. The proposed deep learning models were run on a fundus dataset with normal and cataract symptoms. The proposed deep learning models provide automatic classification of normal and cataract images. Fine-tuning and layer additions were performed on the upper layer using a pre-trained deep learning model called MobileNet V3 Small. A basic MobileNet V3 Small model has also been created to evaluate the performance of the model, which has been enriched by fine-tuning and adding layers to its upper layers. The difference between the proposed model and the basic model is demonstrated by comparing the classification performances of cataract and normal images with accuracy and complexity matrix measurements. According to the best results obtained in the performance comparisons made by separating the training and test data according to the KFold option, the proposed model gave a more successful result graph of 8.26% than the basic model. Finally, the proposed MobileNet V3 model has also been tested on images composed of two different datasets. On average, the proposed MobileNet V3 model on the combined dataset reached 96.62% accuracy.

Publisher

Gumushane University Journal of Science and Technology Institute

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review on Multiple-Ocular Disease Detection Methodology using ML and DL Techniques;International Journal of Scientific Research in Computer Science, Engineering and Information Technology;2024-09-05

2. Eye Disease Detection Using Deep Learning Models with Transfer Learning Techniques;ICST Transactions on Scalable Information Systems;2024-07-19

3. Upper and lower extremity bone segmentation with Mask R-CNN;Bitlis Eren Üniversitesi Fen Bilimleri Dergisi;2024-03-24

4. SkinCNN: Classification of Skin Cancer Lesions with A Novel CNN Model;Bitlis Eren Üniversitesi Fen Bilimleri Dergisi;2023-12-28

5. Classification of Eye Disease from Retinal Images Using Deep Learning;2023 14th International Conference on Electrical and Electronics Engineering (ELECO);2023-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3